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CONTROLLABILITY AND OBSERVABILITY IN THE
PROBLEM OF STABILIZING MECHANICAL SYSTEMS
WITH CYCLIC COORDINATESY

V. L. KarLenova, V. M. Morozov and M. A. SaLMmmNa
Moscow

{Received 22 July 1991)

An approach based on linear control theory is used to solve the problem of stabilizing the steady motions of
holonomic mechanical systems in which only cyclic coordinates are controllable [1-3]. The most general
structure of forces acting on the system is considered and it is assumed that the constraints imposed are
time-independent. The set of new criteria of controllability and observability based on the reduction of the
problem under consideration is obtained. The reduction enables one to reduce the investigation of these
problems to an analysis of a problem of less dimensions.

1. WE consiper a holonomic mechanical system with time-independent constraints. Suppose if is
described by generalized coordinates g;, ..., g, among which there are the coordinates g;
(j=r+1, ..., n; r<n) not occurring explicitly in the expression for the kinetic energy which is
assumed to be explicitly time-independent

T= To + T1 + T2
To=To@) Ti=7T(@)q +8T@w
Ty =%q TA@) g +37C(Q) w + hw'B@@) w

Here

a=lq1q2... 4. 1", ¢ =lqiqs...q; T

@=1qr+1qrs2. .- g7
are column matrices whose elements are the positional coordinates, and positional and pseudocyclic
velocities, A (r X r) and B(m X m) are positive definite symmetric matrices, m =n—r, C(rxm) is a
rectangular matrix, y7(1x r) and 87 (1 X m) are row matrices, and T,(q) is a scalar function. The
elements of the matrices A, B, C, ¥’ and 8” depend on the positional coordinates only.

The generalized forces corresponding to the positional coordinates are specified and represented
by the sum of potential and non-potential forces

0i(a. q', w)=3U/3q, + QN (q. ¢". w), (U=U(q))
G=1,2,....9

The generalized forces corresponding to the pseudocyclic coordinates are represented by the sum
of the specified non-potential forces QF and controlling forces F to be chosen

0@ q. 0D=01@q. @) +Fe@q.w) (k=r+l,r+2,...,n)

Information on the current values of the coordinates ¢ (¢) and velocities ¢°(¢) and w(t) of the
system is supplied by measuring %, = 2(g, q¢", @) of dimensions { X 1.
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864 V. 1. KALENOVA ¢f daf.

We assume that, under certain initial conditions, steady motion

qt)=qo = const, w(t) = wy = const (1.

of the system is possible.
The quantities gy and wy satisfy the equations

1 “ a’bks z 88;( aTQ
rrrrr - Z Wrowso - = ( - =
2 ks=re1 0q, )0 kO™s0 k=r+1 9q; ) ko= ( dg; )n
U N o
=(——a ) 10 (g0.0.w) (1.2)
i O
ON(qo.0,wo) + Fir(qo,0.wo)=0 (i=1,2... .. rok=r+l... . n) (1.3

B=libgsll, 8§=U8k4sy-. 8,07

From now on, a subscript zero means that the value is calculated at g = gy and o = .

Equations (1.2) and (1.3) defining a set of possible steady motions of the system in the
n-dimensional space of the variables g and w are more complicated than those considered in [4].

One can separate [4] the class of trivial steady motions when Eq. (1.2) has the solution g = g, for
any values of wy. The remaining steady motions are called essential.

In particular, for generalized non-potential forces of the form

1n

n
N_ e - 1 . .
Qi =Qg. q)+ k*:r2+lQik(q’ q ) wp+ i §=:r+l 01(q, g ) wrws

-

the conditions for trivial steady motions to exist have the form

au aT

(=) () - 03, 0) =0
3q; o 04 o 1o

abks 5%

3
2 = 1 -
(G ) * Q@0 0020, ) +0}(g,. 010

i
=12, ...r;k,s=r+1,. .. 1)

Let us introduce the deviations x = ¢ —g, and = w—w, and write the linearized Lagrange
equations and the equation of measurements in matrix form

Aox " +Dox" + Wox +Con' — PIn=0
Bon' +Cdx "+ Sox + Rox + Lon = Fou (1.4

o=H,x+H,x +Hyn (1.5)

Here Fyu is the linear part of the control force F, the matrix Fj, has dimensions of m X m, and
a{lx 1) is the linear part of the measurements vector X.

The matrices H, and H, have dimensions of / X r, while the corresponding dimensions of the other
matrices are ! X m for Hs, r X7 for Ay, Dy and Wy, m X m for By and Ly, m X rfor Py, Ry. and 3,
r xm for C,. The elements of these matrices are given by the expressions

Ao =A(q0), Bo=B(qo), Co=C(q0). D=IDyll

QN no 3G aC; ¥y, oy
Diiz"[““Q"lw+ T (- Ty L/ Nl
9q;  k=rv1 0q; 9q; dq; 94 o

W= W;ll. PE=NP g .|l
U1 a By

- - P Wi Wy
9g;0q; 2 k,s=r+1 0g;0q;
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3T, agf g 828,

e —— ]l
aq,aq, aq’ k=r+1 aqiaq, 0
RTod
Lo=NLimp garll Lig_y g p= —2|
dws o
aof s n 3b
Piaor=s[——+ —+ T —E
Bwk Bq; 2=r+} 8q, Y
5 3by 3, a
Se—ri=[ Z Lt QI’\‘r}t
s=r+1 Og; 9g; 9q; o
avN
So=1Serill, Ro=NRe_pil, Riopi=- 2|
9q; o

Gi=1,2,....1) (bs=r+1,...,n)

If the constraints imposed on the system are time-independent (T, =0, Ty =0}, there are not non-potential
forces QF acting at the cyclic coordinates and the forces in X (4 acting at the positional coordinates are
dissipative, then Sy = Py, Ry = 0 and Lo = 0 in Egs (1.4). This case has been considered in {3].

Note that for gyroscopically uncoupled systems (GUS) (Cy= 0), when P, =0, the control u« does not
influence the positional coordinates. The matrix P, vanishes, in particularly, when the constraints are
time-independent (8 = 0), there are no non-potential forces (Q) =0), and the steady motions are trivial
{8 /34: |0 = 0). But, as follows from the expressions for the elements P, ;_,, the matrix Py can also vanish for
an appropriate choice of the non-potential forces QY acting at the positional coordinates. In the general case,
even in a GUS, for trivial steady motions system (1.4} is not separable into two subsystems one of which is
insensitive to control. It provides additional possibilities for stabilizing the trivial steady motions of a GUS.

We will discuss the various statements of the problem on controlling mechanical systems with cyclic
coordinates in a neighbourhood of a steady motion. We will restrict ourselves to considering problems in which
controls are introduced only with respect to cyclic coordinates. This problem was formulated for the first time
by Rumyantsev and Lilov [1, 2]. The most well-known problem is problem 1, which consists of specifying the
control which ensures asymptotic stability of a steady motion with respect to positional and eyclic velocities {1,
2]. The other statement of the control problem {problem 2} is also possible in the case when the purpose of
controlling the system is to provide asymptotic stability of steady motion with a previously specified decrement
speed [3]. In the problem of optimal stabilization it is required to choose the controlling actions in such a way as
to minimize a certain functional characterizing certain requirements on the system [5}. In this connection by
analogy with the statement of the problem of stability with respect to some of the variables, it is also possible to
state the problem of stabilization with respect to some of variables {6]. In fact, the problem of stabilizing the
steady motions by forces acting on some of the cyclic coordinates can be reduced to this problem {this
corresponds to the condition rank Fy = m;<my for Eqs (1.4)]. The similar problem without non-potential
forces has been solved by the methods of the theory of stability in [7].

When solving all the problems mentioned above it is first necessary to answer the question of their solvability
in principle. The latter reduces to investigating the controllability and stabilizability of system (1.4). The
property of stabilizability is related to problem 1 and the property of controllability is related to problem 2.
Furthermore, using the analysis of the observability of systems (1.4} and (1.5) it is necessary to specify the
rational structure of the measuring information on the state of the system (i.e. on the quantities x, x* and 1)
which is necessary to design the stabilizing control. On the basis of certain measuring information it is then
possible to design the stabilization algorithm which realizes the properties required for the closed system, for
instance, when solving the problem of optimal stabilization or introducing feedback based on estimation of the
state vector [3].

2. We will consider the problem of the controllability (stabilizability) of system (1.4). The
standard Kalman criterion of controllability implies the need to analyse the rank of an
(n+r) X {n+r)m matrix. The specific structure of system (1.4) enables one to obtain new effective
criteria of controllability by reducing the problem.

In the general case, if m; <m, the vector Fyu can be represented in the form
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Fou=FoT,v=| =™ o

u=F V= = 1] .1 )

0 oly Fyy 0 v, V1 {1
Ep,

F, = !

(Fy £, .)

by a linear transformation of the control vector u = T, v [T, (mxXm), det T, #0].
The matrices F, . F>; and v, have the dimensions m X m, . (m—m; ) X m; and m, X 1, respectively.

Theorem 1. System (1.4) of the (n+r)th order is controllable (stabilizable) if and only if the
condition

Ao\t + Doh + W,
rank T T2
(G — F2 GU) A (82 — FoiSi) M+ (Ryy — FaRyy)
Cox — PT

=n - my

B2y — F21 By ) A+ (Lay ~ Falyy)

Ao\ + Do) + W, Cor — PT
CTN? + Sor+ R, Boh+ L,

B

VAEA, A={?\{: detﬂ
VAEA", AT={AEA, ReA=0}

1s satisfied.

Here the matrices
Ry Ly,

Ry,

> o

»

cf=
L

ai S11 By
T > SO = ) Bﬁ =

C21 S21 B2l

C{(mlxﬂ, C;,((mmml})‘(r), Bi(my Xm), Byi((n-—my)Xm)

are divided into blocks in accordance with representation (2.1).
In order to prove the theorem it is necessary to rewrite system (1.4) in Cauchy form [taking into

account relations (2.1)]

M,z =A,z +B,v, (2.3)
E, 0 0 0 E, 0

M, = 0 do G A, = ||-Wo -Dy  P¥
0 ¢¥ B ~Ry ~S¢ —~Lg

B,=q00 FII7, z=1 xT xT o7 7

and to use the following criterion of controllability [8]: system (2.3} is controllable if and only if
rank (4, - AM,, B,)=n+r, VAEA
A= {N: det(4, AM,)=0}
If the set A has a zero root of multiplicity », i.e.
Lowy  -PY |
rank ‘
‘; Ro Lo

then the proof of Theorem 1 implies the following statement: for system (1.4) to be controllable,
when its characteristic equation has zero ropot of multiplicity v, it is necessary that the dimensions
of the vector of controls should satisfy the condition m, = v.

= -V
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Note that this statement for controlling a mechanical system with cyclic coordinates in a
neighbourhood of a steady motion corresponds to the statement for controlling a mechanical system
in a neighbourhood of an equilibrium position [9, 10]. When the number of controls is equal to the
number of cyclic coordinates (m, = m, F, = F,,;) Theorem 1 implies the following theorem.

Theorem 2. System (1.4) of the (r-+r)th order is controllable (stabilizable) if and only if the
condition
rankll AgA?* + Do+ Wy Coh—Pf |=r (2.4
VAEA; (VAEAD)
A1 = {)\, det(Aolz + Do}\ + WQ) = Ol

is satisfied.

Comparing condition (2.4) with the criteria of controllability and observability for systems of the
second order [11], we will formulate a statement which enables us to reduce the investigation of the
controllability of the original system (1.4) of the (m + 2r)the order to an analysis of the observability

of a certain system of the 2rth order.

Theorem 3. System (1.4) is controllable if and only if the system
Aoy +D8y +Wiy=0, o=-Poy+Cly (2.5

of the 2rth order is observable.

Note that the criteria of another type can be used to analyse the observability of system (2.5). In
particular, if the constraints imposed on the system are steady and Qf =0 (k=r+1, ..., n),
Q}V =Qju(j=1,...,r), the theorems formulated in [3] follow from Theorems 2 and 3.

For a GUS (Cy = 0) Theorem 3 may be formulated as follows.

Corollary 3.1. GUS (1.4) of the (2r+ m)th order is controllable is and only if the system
Aoy +Doy" + Woy=Plu

of the 2rth order is controllable.
For a gyroscopically coupled system (GCS), when Py = 0, from Theorems 2 and 3 one can deduce
the following.

Corollary 3.2. If the matrix P, satisfies the condition Py =0 for GCS (1.4), this system is
controllable if and only if det W, %0 and the system

Aoy +Doy + Woy =Cou
is controllable.

Corollary 3.3. If there is one positional coordinate (r = 1) in the system, then system (1.4) is
controllable if and only if

ACo # P ANEA,

3. Let us consider the question of the observability of system (1.4).
In the general case, when the measurements are in form (1.5) and H;#0 (i=1, 2, 3) the
conditions of observability may be formulated as follows.

Theorem 4. System (1.4) of the (n+ r)th order is observable with respect to measurement ( 1.5)if
and only if the conditions
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rankN=n VAIE€A (i
Ao\ + DoX + W, Co — PT

N= C{}?\z +SQ7\ +Rg Bg)t +LQ
Hyh+ H, H,

are satisfied.
If among the roots of the characteristic equation of system {1.4) there is a zero root of multiplicity
v, i.e. condition (2.4) is satisfied, then Theorem 4 implies the following statements.

Corollary 4.1. In the case when A has a zero root of multiplicity v, for system (1.4) to be
observable it is necessary that the number / of measurements should satisfy the condition /= ».

Corollary 4.2. System (1.4) is not observable with respect to the measurement o = Hyx+ Hox'" if
P()::OﬁndL():O‘

Suppose that only the positional coordinates (H; =0, H;=0 and rank H, =[<r} or the
positional velocities (H; = 0, H; = 0, rank H; = /<r) are measured. By modifying the measure-
ments we can represent the matrix H; as H, =||E;H,,|| in the first case and the matrix H, as
H, = || E;Hx,|| in the second case.

Consider the matrix

(Ayg ~ Ay 1 Hi)) N +(Dyg — Dy Hpp) M + Co - P¥

N, = +{(Wyy — Wy dly)

(CT, — CLLH) N +(S1a = Sy Hpg) M + BoX tLs
+(Ry2 — Ry Hp2)

Corollary 4.3. System (1.4) of the (n+ r)th order is observable with respect to the measurement
o = Hyx of the positional coordinates if and only if the condition

rank NV, = n—1 YAEA holds.

Corollary 4.4. System (1.4) of the (n + r)th order is observable with respect to the measurement
o = H,x" of the positional velocities if and only if the condition

rank Ny =n -1 VAEA,
holds, and the set A has no values A = 0.
Unlike the case of time-independent constraints and the absence of non-potential forces acting in
the cyclic coordinates, when the set A always has zero roots and the system is not observable with
respect to the measurement of o = Hyx" [3], here, as Corollary 4.4 shows, non-observability is

possible.
Consider the case when only the cyclic velocities are measured

H1=H2r(), I'BﬂkH3=l<m

If we represent the matrix Hs in the form H; = | Hs,; £l and make the corresponding decomposi-
tion of the matrices By, Lo and Py, C, into the blocks of the form

Hdyy Byq llandli Yy a2 ll
(@i (m X (m = 1)), Pas(m XD}, Yt X(m—1). Y220 X 1)

we can formulate the following corollary.

Corollary 4.5. System (1.4) of the (n+ r)th order is observable with respect to the measurement
o = Hxn of the cyclic coordinates if and only if
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=p-] VAEA

. A2 + Do\ + Wy (~P§y +P3H31) +(Cay - CazH31) A }
ran

S22+ R, (Bay — BaaH3 YA+ (Lay — LagH3y)

Here S, = So— C5 Ag' Do and R, = Ro— C§ Ag ' Wo.
This statement may be proved using the equality

AGAZ + DA+ W, Con—-PT
ch+5,0+R, BA+L, | =
0 H,
E, 0 0 AN +D A+ W —PTac
=E cTasr B, © H S,A+R, BA+L,
0 o £ 0 H,

Let us consider the cases, each taken separately, in which either all the positional coordinates
(o = x) or all the positional velocities (o = x"}, or all the cyclic velocities (o = n) are measured. The
advisability of such a consideration is due to the fact that in all these cases the investigation of
observability of system (1.4) of the (n+r)th order reduces to investigating the observability of a
system of lower order.

The following theorems hold.

Theorem 5. System (1.4) of the (2r + m)th order is observable with respect to the measurement of
all the positional coordinates if and only if the system

Box +Lox=0, o=Pix 3.2)
P] = P{ + CoBg" Lo
of the mth order is observable.
System (3.2) is observable if and only if the condition {8]
Py
BoA ¥+ Lg
Ay = {A: det(Boh + Lg) =01

rank =m, V AE Az

is satisfied.

Theorem 6. System (1.4) is observable with respect to the measurement of all the positional
velocities if and only if the condition

Wo —PT

det #0

U] 1]

is satisfied and system (3.2) of the mth order is observable.

Theorem 7. System (1.4) of the (2r + m)th order is observable with respect to the measurement of
all the cyclic coordinates if and only if the system Agx"* + Dox" + Wox =0, o= S, x" + R, x of the
2rth order is observable.

This statement is equivalent to the condition [11]

k| AN F Dok Wo VAEA
ran =p,
S:A+R, !

These theorems may be proved by representing system (1.4) in the form (2.3) and using the
theorem [12] on the equivalence of the observability conditions for system (2.3) with the
measurement o = H,z and for the system
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MZZ =(Az_Ksz)Z+BzU1‘ UZHZZ
(K, = const)

When the conditions of controllability and observability of systems (1.4) and (1.5), which arc
derived from the theorems formulated above, have been stated, it is possible to set up algorithms of
stabilization by analogy with [3].

4. Example. Let us consider the problem of stabilizing the steady motions of a symmetric rotor of mass m
which is fixed at the middle of an elastic shaft with a certain eccentricity /. Here, as in many publications (see.
for instance, [13-15]), we assume that the motions of the rotor are plane. We take the point O of the
intersection of the plane of the motion and the straight line drawn between the centres of supports of the shaft
as the origin of the moving system of coordinates. The x, axis is parallel to the segment Ge(|Ge| = 1)
connecting the centre of mass G of the rotor and the point € of the rotor’s fixing on the shaft. Let x; and x-
denote the coordinates of the centre of mass G, and let ¢ be the angle between the x; axis and a fixed direction

&

The kinetic energy of the rotor and the force function of the elastic coupling have the form [14]

T=Yam[x® +x;7 + 29 (x,X; — X% )+
+otx] + x))] +he?

U=Wle,x; tc,x, + D?}

Here ¢, and c; are the principal stiffnesses of the shaft. We denote the central moment of inertia of the rotor
by J = mp® where p is the radius of inertia of the rotor.

Let us assume that the forces of internal and external friction act on the rotor, supposing, as this takes place,
that the force of external friction is proportional to the absolute speed of the centre of mass and the force of
internal friction is proportional to the relative speed {14].

The system under consideration is gyroscopically coupled; x| and x, are the positional coordinates and ¢ is
the cyclic one. The generalized controlling force (the moment of drive) corresponding to the coordinate ¢ must
be specified.

The equations of motion have the following special solution describing the steady motion of the rotor

X, TC 1A X, = —ciawy /A, ¢ =w, = const AT
(413

A=K, tatwl, kiTei—wy  (j=1.2)
The moment F, corresponding to steady motion (4.1) is specified by the relation £, = aw{xfy+x3,) In
particular, when a = 0, steady motion (4.1) exists if k; #0.
It is well known [14] that a range of values of the angular velocity wy exists in which the steady motion (4.1} is
unstable, and it is necessary to introduce an additional control in order to stabilize it.
The linearized equations of perturbed motion of the rotor have the form (1.4) in which x = fxrealll, mis a
scalar, and

K 0
Ag=E, Dy,=@+b E, +2wyl,, W,=I “‘ I +aw,l,
¥ K,
T_ e =
Co Tl =X50 X0, Py =8, =1 20X, ~aX,,, 2wox,, tax,, |
By, =p*, Ry =l28weXx,, 2aweX,, I, L, =ar}
0 -1

ry =Xl vxk,, Fy=1Lt. [, =} f

The controllability condition given by Theorem 2 for this problem has the form

[N +@+b) A+, J[AM+@+D)A+x, ] +twi2r+a)? #0 42)

Worg (2K, +a) +ex, s QwoX; o —aX,,) -
wort(3a +2b) +ex, ,x,,

Condition (4.2) is broken down only when a certain relation exists between the parameters of the system.

We note a number of special cases.

1. A circular shaft (k, = k> = k, € = 0). The condition for controllability to break down is

A= — , €T K, — Ky

Kk =Ya(ha+b) {4.3)
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In particular, when a = 0, the system is always controllable in a neighbourhood of the motion (4.1). Note
that in [16] where only the case a = 0, k, = k, was considered, due to an inaccuracy, a fictious condition for
controllability to break down occurred,

2. There is no external friction (@ = 0). The condition for controllability to break down has the form

Ky = Ky - 4wp — K3/ (4.4)

Condition (4.4) can only be satisfied when k; %k, and b> V¢, + 3w,

It can be shown that system (1.4) for the problem under consideration is always observable when the
positional coordinates (x;, x,) are measured. If the positional velocities (x';,x) are measured this always
hoids except when the parameters of the system satisfy the condition

afls, k, +3a* W), +hwi,x]o ¥4, X7, ) — 2owyX, o X, 06} =0

Obviously, if there is no friction (¢ = 0), the system is non-observable.

According to Theorem 7 the system under consideration is always observable with respect to the cyclic
velocity (o = n) except for the following cases

1. (k, —ab)(x, —ab)+a*w} =0

2N +@DA+K A +@+ DA K, ] +wi@A+a)? =0

1
20, (rik, +ext)) \
- 4
@+2B)wyry — ex, 4%,

(=

For a circalar shaft the condition for observability to break down agrees with condition (4.3). It agrees with
condition {4.4) if there is no external friction.
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