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An approach based on linear control theory is used to solve the problem of stabilizing the steady motions of 

holonomic mechanical systems in which only cyclic coordinates are controIlable [l-3]. The most general 

structure of forces acting on the system is considered and it is assumed that the constraints imposed are 

time-independent. The set of new criteria of controllability and observability based on the reduction of the 

problem under consideration is obtained. The reduction enables one to reduce the investigation of these 

problems to an analysis of a probtem of less dimensions. 

1, WE CUNSZDER a fiolonomic mechanical system with time-independent constraints. Suppose it is 
described by generalized coordinates qr) . . . , qn among which there are the coordinates qj 

(i = r+l, . . ., n; r< n) not occurring explicitly in the expression for the kinetic energy which is 
assumed to be explicitly time-independent 

llere 

are column matrices whose elements are the positional coordinates, and positional and pseudocyclic 
velocities, A (r x r) and B (m x m) are positive definite symmetric matrices, m = n - r, C(r x m) is a 
rectangular matrix, ~‘(1 x r) and Sr(1 x m) are row matrices, and T,(q) is a scalar function. The 
elements of the matrices A, B, C, yT and 6r depend on the positional coordinates only. 

The generalized forces corresponding to the positional coordinates are specified and represented 
by the sum of potential and non-potential forces 

The generalized forces ~o~es~~nding to the pseudocycI~c coordinates are represented by the sum 
of the specified non-potential forces Q,” and controlling forces Fk to be chosen 

Qk(Q*Q.,~)=Q~(~,q.,W)+Fk(~,q-,w) (k=r+ 1, r+2, . . .,Pz) 

Information on the current values of the coordinates q(t) and velocities q’(t) and w(t) of the 
system is supplied by measuring C = 2,(q, q’, w) of dimensions 1 x 1. 

% PrikL Mat Mekh. Vol. 56, NO. 6, pp. 95%967,1992. 



We assume that, under certain initial conditions. steady motion 

q(t) = 40 = const. w(t) = wg = const 

of the system is possible. 
The quantities q. and w0 satisfy the equations 

Q~(4o~O.~o)‘~k(qo,O~wo)=O (i=1,2 ,.... r, k=rtl..,_. n) 

B = 11 b,, 11. 6=Il6k+, . ..&J 

(1.i) 

From now on, a subscript zero means that the value is calculated at q = q. and w = wo. 
Equations (1.2) and (1.3) defining a set of possible steady motions of the system in tht, 

tz-dimensional space of the variables q and w are more complicated than those considered in [4J. 
One can separate [4] the class of trivial steady motions when Eq. (1.2) has the solution q = qit for 

any values of w(, . The remaining steady motions are called essential. 
In particular, for generalized non-potential forces of the form 

the conditions for trivial steady motions to exist have the form 

(i= 1.2,. .r; k.s =r+ I.. ,n) 

Let us introduce the deviations x = q- qtt and n = w-w,) and write the linearized Lagranpc 
equations and the equation of measurements in matrix form 

‘4 (JX ‘. t l&X‘ + wax + COT?. - P& = 0 

Bov* t C,Tx- + Sax. + Rex + Lo77 = r;c,u (I.41 

o=H,x+H2x.+H3~ (1.S) 

Here F,,u is the linear part of the control force F, the matrix F,, has dimensions of m x m, and 
“(I x 1) is the linear part of the measurements vector 2. 

The matrices H, and HZ have dimensions of f x r, while the corresponding dimensions of the other 
matrices are (X m for H?. r x r for A,, , D,, and IV,, . m x m for & and L,, , m x r for P,, f R,, . and S,,. 
r x m for C,, . The elements of these matrices are given by the expressions 

Ao =A(qo), Bo = B(qo), Co = C(qo), D = II Dij II 

- - -)tdkf(-- 
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(i,j=1,2,... ,r) (k,s=r+l,..., n) 

If the constraints imposed on the system are time-independent (I’, = 0, 2’0 = 0), there are not non-potential 
forces &’ acting at the cyclic coordinates and the forces Qy x Qjd acting at the positional coordinates are 
dissipative, then Sa = PO, R0 = 0 and Lo = 0 in Eqs (1.4). This case has been considered in ]3]. 

Note that for gyroscopically uncoupled systems (GUS) (CO = O), when Pa = 0, the control u does not 
influence the positional coordinates. The matrix PO vanishes, in pa~icularly, when the Gonstraints are 
time-independent (S = 0), there are no non-potenti~ forces (Qr = 0), and the steady motions are trivial 
@b&q, j0 = 0). B u , as follows from the expressions for the elements Pi,k-r , the matrix PO can also vanish for t 
an appropriate choice of the non-potential forces Q,” acting at the positional coordinates. In the general case, 
even in a GUS, for trivial steady motions system (1.4) is not separable into two subsystems one of which is 
insensitive to control. It provides additional possibilities for stabilizing the trivial steady motions of a GUS. 

We will discuss the various statements of the problem on controlling mechanical systems with cyclic 
coordinates in a neighbourhood of a steady motion. We will restrict ourselves to considering problems in which 
controls are introduced only with respect to cyclic coordinates. This problem was formulated for the first time 
by Rumyantsev and Lilov [I, 21, The most well-known problem is problem 1, which consists of specifying the 
control which ensures asymptotic stability of a steady motion with respect to positional and cyclic velocities [l, 
21. The other statement of the control problem (problem 2) is also possibie in the case when the purpose of 
controlling the system is to provide asymptotic stability of steady motion with a previously specified decrement 
speed [3], In the problem of optimal stabilization it is required to choose the controIIing actions in such a way as 
to minimize a certain functional characterizing certain requirements on the system {S]. In this connection by 
analogy with the statement of the problem of stability with respect to some of the variables, it is also possible to 
state the problem of stabilization with respect to some of variables 161. In fact, the problem of stabilizing the 
steady motions by forces acting on some of the cyclic coordinates can be reduced to this problem [this 
corresponds to the condition rank Fo = ml cm0 for Eqs (1.4)]. The similar problem without non-potential 
forces has been solved by the methods of the theory of stability in [7]. 

When solving all the problems mentioned above it is first necessary to answer the question of their solvability 
in principle. The latter reduces to investigating the controllability and stabilizability of system (1.4). The 
property of stabil~ability is related to problem 1 and the property of controllability is related to problem 2, 
Furthermore, using the analysis of the observability of systems (1.4) and (1.5) it is necessary to specify the 
rational structure of the measu~ng info~at~on on the state of the system (i.e. on the quantities X, X* and n) 
which is necessary to design the stabilizing control. On the basis of certain measuring information it is then 
possible to design the stabilization algorithm which realizes the properties required for the closed system, for 
instance, when soIving the probtem of optimal stabifization or introducing feedback based on estimation of the 
state vector f3]. 

2. We will consider the problem of the controllability (stabilizability) of system (1.4). The 
standard Kalman criterion of controllability implies the need to analyse the rank of an 
(n I- r) x (n + r)m matrix. The specific structure of system (1.4) enables one to obtain new effective 
criteria of controllability by reducing the problem. 

In the general case, if ml <F-E, the vector Fou can be represented in the form 
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by a linear transformation of the control vector u = r,, u 1 T,, (m x m), det 7;, # O]. 
The matrices F,, , F,, and uI have the dimensions m x m , . (m - nzl ) x ml and tn, x 1, respectively. 

Theorem 1. System (1.4) of the (rz+u)th order is controllable (stabifizable) if and only if the 
condition 

C&4 - P; 

(~21-F21Bi1)~+&1 --F21&1) II =n-ml 

Aoh’ iDoh + W. c&-P,T 

C,Th2 +&h +R 0 &ht Lo 

V hEA”, A+= 1 AEA. Reh>Ol 

is satisfied. 
Here the matrices 

(2.2) 

~~(m,Xr>, C~~((m-rn~)Xr), BII(m~Xm). B*~((n-mI)Xm) 

are divided into blocks in accordance with representation (2. I). 
In order to prove the theorem it is necessary to rewrite system (I .4) in Cauchy form [taking into 

account relations (2.1)) 

I&Z. = A,z + Bzul (3.3) 

E,O 0 0 E, 0 

M,= 0 A0 co A, = -wo --Do POr 

0 CT B. -R. -So -Lo 

B,=flO 0 F;\/‘, z=II xT x.= q~’ IIT 

and to use the follo~fing criterion of c~?ntrollabiIity [Sj: system (2.3) is controllable if and only if 

rank (A, .- hM,, B,)=rr+r, VhEA 

A= IX,: det(A, XM,)=Of 

If the set A has a zero root of multiplicity L’, i.e. 

rank 
! wo 

/) 

-P$ ’ 
=n -v 

Ro Lo P 

then the proof of Theorem 1 implies the following statement: for system (1.4) to be controllable, 
when its characteristic equation has zero ropot of multiplicity u, it is necessary that the dimensions 
of the vector of controls shoutd satisfy the condition ml 3 Y. 
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Note that this statement for controlling a mechanical system with cyclic coordinates in a 
neighbourhood of a steady motion corresponds to the statement for controlling a mechanical system 
in a neighbourhood of an equilibrium position [9, lo]. When the number of controls is equal to the 
number of cyclic coordinates (ml = m, F, = F,) Theorem 1 implies the following theorem. 

7Yzeorem 2. System (1.4) of the (n+r)th order is controllable (stabilizable) if and only if the 
condition 

rank11 AoX2 + &X + IV, Cob - P;f II =t (2.4) 

V&El\1 (VhEA,+) 

A1 = IX, d&(&,X2 +&Xt I+‘,)=01 

is satisfied. 
Comparing condition (2.4) with the criteria of controllability and observability for systems of the 

second order [ll], we will formulate a statement which enables us to reduce the investigation of the 
controllability of the original system (1.4) of the (m + 2r)the order to an analysis of the observability 
of a certain system of the 2rth order. 

Theorem 3. System (1.4) is controllable if and only if the system 

Aoy” +o,Ty- +w;y=o, a=-PQy tcgy- 

of the 2rth order is observable. 

(2.5) 

Note that the criteria of another type can be used to analyse the observability of system (2.5). In 
particular, if the constraints imposed on the system are steady and Qt = 0 (k = r-i- 1, . . . , n), 
Qy=Q&=l,..., r), the theorems formulated in [3] follow from Theorems 2 and 3. 

For a GUS (C, = 0) Theorem 3 may be formulated as follows. 

Corollary 3.1. GUS (1.4) of the (2r+ m)th order is controllable is and only if the system 

Aoy” t&y’ + way = P& 

of the 2rth order is controllable. 
For a gyros~opi~ally coupled system (GCS), when PO = 0, from Theorems 2 and 3 one can deduce 

the following. 

Corollary 3.2. If the matrix PO satisfies the condition Pa = 0 for GCS (1.4), this system is 
controllable if and only if det W0 # 0 and the system 

A*y” + Day’ + Iv,y = c(ru 

is controllable. 

CoroZZury 3.3. If there is one positional coordinate (v = 1) in the system, then system (1.4) is 
controllable if and only if 

3. Let us consider the question of the observability of system (1.4). 
In the general case, when the measurements are in form (1.5) and Hi+0 (i = 1, 2, 3) the 

conditions of observability may be formulated as follows. 

Theorem 4. System (1.4) of the (n + r)th order is observable with respect to measurement (1.5) if 
and only if the conditions 
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are satisfied. 
If among the roots of the characteristic equation of system (l-4) there is a 2ef0 root of ~~f~~~~~~~~~ 

v, i.e. condition (2.4) is satisfied, then Theorem 4 impties the fotlowing statements. 

Corollary 4.1. In the case when A has a zero root of multipiicity u, f& system (1.4j to be 
observable it is necessary that the number f of measurements should satisfy the condition f> Y_ 

cbrullary 4.2. System (1.4) is not observable with respect to the measurement u = Hi x +f-fzx’ if 
PO = 0 and L,, = 0. 

Suppose that only the positional coordinates (U, = 0, Hi = 0 and rank Hi = t<r) or the 
positional velocities (Hi = 0, H7 = 0, rank Hz = I<r) are measured. By modifying the measure- 
ments we can represent the matrix Wi as IfI = l~E~H,z~~ in the 
Hz = /fE,Ei’,,I/ in the second case. 

Consider the matrix 

Nj = II f Pi2 - ~114”2> 

Corolhry 4.3. System (1.4) of the (n + r)th order is observable 
fl= Hix of the positional coordinates if and only if the condition 

rank N, = n - I VhEA holds. 

Corallury 4.4. System (1.4) of the (n + r)th order is observable 
cr = &x’ of the positional velocities if and only if the condition 

rank Nz =n-I VXEh. 

holds, and the set A has no values h = 0. 

first case and -the matrix ff2 as 

with respect to the measurement 

with respect to the measurement 

Unlike the case of time-independent constraints and the absence of bob-potential forces aciing in 
the cyclic coordinates, when the set A always has zero roots and the system is not observable with 
respect to the measurement of u = Hzx” [31, here, as Corollary 4.4 shows, non-observability is 
possible. 

Consider the ease when only the cyclic velocities are measured 

HI =H2 =O, rankWj= l<m 

If we represent the matrix H3 in the form Nj = 11 HSI &[I and make the corresponding decomposi- 
tion of the matrices Ba, LI1 and PO, C,, into the blocks of the form 

It @21 G2 It and 11 3/21 $22 Ii 

(@21(m x cm - f)), cp22tm x 0. ti,,(r x cm - 01. tL22Q x 01 

we can formulate the following corollary. 

CA~ollary 4.5. System (1.4) of the (n + r)th order is observable with respect to the ~~easurem~~t 
c = H3 q of the cyctic coordinates if and only if 
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rank II AoX + DOX + 8’0 (-P& +@&l)+(CZt - c22H3l)h 

&A f Rz I/ 

=n-1 VXEA 
(&I --B22H31)h + @‘21 - L22H31) 

Here S2 = S, - CrA{’ DO and R2 = RO - CoTA;’ W, . 
This statement may be proved using the equality 

A,&’ +D,h+ W, 

C,Th’ + S,h+R, 

0 

-PT+ C,h 

B,h+L, 

H, 

Let us consider the cases, each taken separately, in which either all the positional coordinates 
(g = x) or all the positional velocities (o. = x’), or all the cyclic velocities (a = 77) are measured. The 
advisability of such a consideration is due to the fact that in all these cases the investigation of 
observability of system (1.4) of the (n+ r)th order reduces to investigating the observability of a 
system of lower order. 

The following theorems hold. 

Theorem 5. System (1.4) of the (2r + m)th order is observable with respect to the measurement of 
all the positional coordinates if and only if the system 

BoX‘tLo~=o, o=P& (3.2) 

Pf = P;f + cJ3; LO 

of the mth order is observable. 
System (3.2) is observable if and only if the condition [8] 

rank 

A2 = iA: det(&h+Lo)=O~ 

is satisfied. 

Theorem 6. System (1.4) is observable with respect to the measurement of all the positional 
velocities if and only if the condition 

det 

is satisfied and system (3.2) of the &h order is observable. 

Theorem 7. System (1.4) of the (2r -i- m)th order is observable with respect to the measurement of 
all the cyclic coordinates if and only if the system AOX” + DOx’ + W,,y = 0, a = S2x* 4- REX of the 
2rth order is observable. 

This statement is equivalent to the condition Ill ] 

rank II AOX2 t l&,X + W, 

S2X + R2 II 
=r t VhEA1 

These theorems may be proved by representing system (1.4) in the form (2.3) and using the 
theorem [12] on the equivalence of the observability conditions for system (2.3) with the 
measurement o = H2.z and for the system 
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M,z = (A, - K,H,)z + Bru, L 0=H,.? 

(K, = const ) 

When the conditions of controllability and observability of systems (1.4) and (1.5). which arc 
derived from the theorems formulated above. have been stated, it is possible to set up algorithms of 
stabilization by analogy with [ 31. 

4. Example. Let us consider the problem of stabilizing the steady motions of a symmetric rotor of mass rrr 
which is fixed at the middle of an elastic shaft with a certain eccentricity 1. Here, as in many publications (see, 
for instance, [13-15]), we assume that the motions of the rotor are plane. We take the point 0 of the 
intersection of the plane of the motion and the straight line drawn between the centres of supports of the shaft 
as the origin of the moving system of coordinates. The xt axis is parallel to the segment GE(I G;F! = 1) 
connecting the centre of mass G of the rotor and the point E of the rotor’s fixing on the shaft. Let xi and _I- 
denote the coordinates of the centre of mass G. and let cp be the angle between the xl axis and a fixed direction 

51 
The kinetic energy of the rotor and the force function of the elastic coupling have the form [14] 

T=%~[x;~ +x;= t 29.(x,x; --x,x;)+ 

+9.2(x; + x;)] + YzJ~.~ 

u=%[c*x: +c,cx, + I)‘] 

Here cr and cZ are the principal stiffnesses of the shaft. We denote the central moment of inertia of the rotor 
by J = mp2 where p is the radius of inertia of the rotor. 

Let us assume that the forces of internal and external friction act on the rotor, supposing, as this takes place, 
that the force of external friction is proportional to the absolute speed of the centre of mass and the force of 
internal friction is proportional to the relative speed [ 141. 

The system under consideration is gyroscopically coupled; xr and x2 are the positional coordinates and q is 
the cyclic one. The generalized controlling force (the moment of drive) corresponding to the coordinate C+ must 
be specified. 

The equations of motion have the following special solution describing the steady motion of the rotor 

X10 =c,~,ifA, xzo = -c,aw,l/A, lp’=wo = const 
t-b.1 i 

A=K~K? +a*w:. Kj = cj ~ 62; (j- 1.2) 

The moment F. corresponding to steady motion (4.1) is specified by the relation F,) = crw,,(.r~,,+.&) in 

particular, when a = 0, steady motion (4.1) exists if k, ZO. 
It is well known [14] that a range of values of the angular velocity w,, exists in which the steady motion (4. I t is 

unstable, and it is necessary to introduce an additional control in order to stabilize it. 
The linearized equations of perturbed motion of the rotor have the form (1.4) in which Y = l!+,x~]/’ I 71 ix A 

scalar, and 

A, =E,, D, = (a + b) Ez + 2w,,I,. W, = I! 
ii, c, 

0 
II + aw,I, 

K: 

c,T= /I -xso x,o /I, P, =S, =/I 2w,x,, --axzo, 2w,x,, +axIO /I 

B, = p2, K, =I1 2aw,x,, 2aw,x,, II, L, =ari 

0 -I 
r; =x:, +x:,, F, = I. I, = II 

1 0 ” 

The controllability condition given by Theorem 2 for this problem has the form 

[A2 +(a+b)h+~,][h* +(a+b)h+~~] +w:(2~+a)‘#O 
(-t.?) 

wor,l(2~, +a2)+ex10(2wOx,0 -axoo) A=_ ~ 
wori(3a+2b)+ex,,x,, 

I E=K2 -K, 

Condition (4.2) is broken down only when a certain relation exists between the parameters of the system. 
We note a number of special cases. 
1. A circular shaft (k, = k2 = k. t = 0). The condition for controllability to break down is 

K = ‘/:a(%a + b) I-k..\) 
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in particular, when a = 0, the system is always controiiable in a n~i~hbourhood of the motion (4.1). Note 
that in [16] where only the case a = 0, kI = k2 was considered, due to an inaccuracy, a fictious condition for 
controllability to break down occurred. 

2. There is no external friction (a = 0). The condition for controllability to break down has the form 

UI = K~ - 4~: - K;;b’ (4.4) 

Condition (4.4) can only be satisfied when kl f kz and b > dc, + 34. 
It can be shown that system (1.4) for the probiem under consideration is always observabte when the 

positional coordinates (x1, xz) are measured. If the positional velocities (x*~, xi) are measured this always 
hoids except when the parameters of the system satisfy the condition 

&(Kr K* + Ww;)r, f 4tJ:fK,x,2, + K&,> - 24W,X, &*Ej = 0 

Obviously, if there is no friction (a = 01, the system is non-observable. 
According to Theorem 7 the system under consideration is always observable with respect to the cyclic 

velocity (cr = 7) except for the following cases 

1. (K, - ab)(K, - ub) + u* w: = 0 

2. [A* +(a+b)h+K,][h’+(~*b)X*K~] +w:(Zh+a)* =O 

(’ = - 

2w,@,zK, + EX:i,) 

(a + 2b) WJ: 
)r 

- ex,OX,O 

For a circular shaft the condition for observabihty to break down agrees with condition (4.3). It agrees with 

condition (4.4) if there is no external friction. 

1. 

2. 

3. 

4. 

5. 
6. 

7. 

a. 

9. 
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11. 

12. 
13. 
14. 
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